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The first problem of global variational Calculus is to try to formulate intrinsi-
cally the Euler-Lagrange equations which characterize the critical sections. For
variational problems of arbitrary order in one variable and for variational
problems in » variables of order 1 or 2 this is attained by means of the Poincaré-
-Cartan form (see [3], [5], [7] and [8]). It is certainly well-known that in such
cases it is possible to associate to each r-order variational problem on a sub-
mersion p : Y - X an ordinary n-form © on J2 7! such that the critical sections
of p are characterized by the Cartan equation:

(*) (i,d®)| ,, | =0 forevery vector field D in J2" 1.
J s

Several authors ({1], [2], [4] and [6]) have recently proved, through different
methods, that for r-order variational problems in n variables with » > 2 and n > 1
the Poincaré-Cartan form is not unique and it essentially depends on a linear
connection on the base X and on a linear connection on the vertical bundle
V(Y). Briefly, the fundamental result of this theory can be summarized in the
following way:

«let p:Y > X be a submersion of differentiable manifolds, w a volume
element on X and let & :J" - R be a differentiable function. For each pair of
linear connections V,, V on T(X). V(Y), respectively, it is possible to associate
to the Lagrangian density #w an ordinary n-form © on J2"71 such that the
critical sections of the variational problem defined by £w are characterized
by the (*) condition.

Globally, the © form can be expressed as

0=ZLw+nA6",

where 1 a section of the vector bundle A" !T7T*(X) e ;
stands for the structure form on J7.
Similarly the differential of © can be expressed as
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dO = (L Nw +dO) + GROHVAO T

where d is the formal differential on J= (precise definitions will be given after-
wards). In this decomposition the (1 4+ 1)-form & =d A w +dO does not
depend on the connections chosen and gives the Euler-Lagrange cquations. while
the second term does depend on such connections and does not appear in the
Euler-Lagrange equations (because it contains double products of structure
forms) but it determines the pre-symplectic structure on the space of critical

sections».

For a more detailed exposition of the development ot this methodology
one may consult [4].

In this note I shall prove that it is really possible to describe the & form by
means of simple axioms. More precisely the result is the following.

THEOREM. Let p : Y — X be a submersion on a manifold X oriented by a volume
clement w and & :J"—> R be a differentiable function. There cxists a unigue
ordinary (n + 1) form & , on J 2 which fulfills the following conditions.

(L i,®, =0 forevery vector field D of T(J 2y vertical on' Y

(2) i1)] iD: ® . =0 for every pair of vector fields D . D, of 1'(.J r,

(3) There exists a section n of A" Trxx)» Jar VEJ7 Y such thar
b, =d LANw+dnAo.

A section s of p critical tor the variational problem detined by Z£'w it and
only if for every vector field D on J 2" one has:

(F#) ”D (l);/ )!jz"s = 0.

In this way it is always possible to associate to cach variational problem an
(n + 1)-form & (which replaces d® but is not exact!) independent of cvery
connection which characterizes the critical sections by a condition of the (*)

type.

Vinogradov has obtained a characterization of kuler-Lagrange equations as
a differential of a certain spectral scquence. The context of his theory differs
from ours and uses different and more sophisticated methods (see for instance
[91).

Before passing on to the proof of this theorem, we shall introduce some nota-
tions and known results which will be used later.
a) Given a sumbersion p : Y — X, the A-jet bundle of local sections of p is
denoted by J¥ =J¥(Y/X). with canonical projections 2N IR =Y A A
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and the vertical bundle on X is denoted by V(J5).
The vertical differential of order k of a section s at a point x € X is the lincar
map

v . k-1 k-1
@) T D=V, 5D

X

defined by the formula
(d2s) (D) =D — (j* s 0P, _ ), (D).

b) The structure form of order k is the 1-form 6% on J* with values in the induced
vector bundle V(Jk -1 Lk defined by the formula
08 (D) = (49), Ty 4y (D),
where 7, : :JB > J for h =k, is the canonical projection.

If (xl., )Q)W|< x is the system induced on Jk by a fibred system of local coordina-
tes (x]., ) for the submersion p, locally one has:

Y Yaer

i lal<k

where 6! is the ordinary 1-form defined by

=dyi=) i 4%
7

and (j) is the multi-index (/) = (0, ..., 1,...,0).

G
¢) A vector field D on J¥ is called an infinitesimal contact transformation if
for every linear connection V on V(J¥~1) there exists an endomorphism f on
VJk- 1) such that

k_ ropk
L, 0% =fo0F,

where L, is the Lie derivative induced by V.

One can prove that for every vector field D on Y there is a unique infinitesimal
contact transformation D(k) on J*¥ which is projectable on D. The vector field
D(k) is called the infinitesimal contact transformation of order k associated
with D.

d) LetJ™ be the inverse limit of the system J*, ”hk)' The space J= is endowed
with a sheaf of rings defined by
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& =lim-C7.
J —
k
The sections of & _ are. by definition, the «differentiable functions» on
J 7. Similarly. the differential forms on J > are defined by

Q' =lm-Q =lim-AQ
o T !

For each vector field D on X. there exists a unique vector ficld D on J* pro-
jectable on D ans such that

0%(D) =10, forevery k e N.
The vector field D is defined by the formula

D, _ f=D.(feojks) if fec= k).
(iss) X

X

Locally:

0 ]

d L
_ = — 4 J’(:* gy T
ax;  dx, 4 0y,
One denotes by d - Sl;m —»QJ’:I the formal differential. This is the unique
anti-derivation of degree + 1 on the exterior algebra @ Q;w such that:
]

iy ded=—dod.
ii) (df) (D) =Df.
iii) (df) (D) =0. ifD is vertical on X.

Locally: dw = z dxl. A L( W,
J

3
a.l’/

e) If w. w' are differential forms on a manifold Z with values in the vector
bundles £, E*, respectively. we denote by w Aw' the exterior product of w
and w’ with respect to the bi-linear form E x 2L = Z x R induced canonically
by duality.

Proof of the theorem. Uniqueness. Let &, . (l)'z be two (n + 1)-forms fulfilling
the conditions (1), (2) and (3) of the theorem.
From (1) and (2), locally one has



CANONICAL CARTAN EQUATIONS FOR HIGHER ORDER VARIATIONAL PROBLEMS 5

by~ = (Z Fidy;
1

with the notations explained in b). But

Adx (A .. /\dxnz(ZFiG{))/\de/\“./\dx”,

n=Y Y fLdx AL Adxy AL Adx, edy)

] lal<r
and similarly for ". Therefore, from (3) it follows that:

S Foi /\dx]/\.../\dxnza(z S gl dx ALAGGA. Adx, A6

ij lai<r
H i i
w1thga].—fa].—faj.

0
Thus, by writting D]. = polt one obtains:

Xj

Y FOiAdx A Adx, =
i

=Y Y Enitan A L Ad ALD g 0L+l 0 )] =

Lj lai<r

=Y ) CninlDgl 00+ gl 6, I Adx A Adx,,.

ij lal<r
So:
- _Njtn=-1p i
(4) F"_Z( 1) D,gp .
(5) Y 0iDgl,+ ) (1gl=0, for 0<|a|<r.
) Br(f)=c
(6) Y (-1)Vgj,=0. for |a|=r.
8+ ()=

Now the function Fikz (—DFz 1 izk (—1yirr1 ﬁ“ﬁj g‘ii does not depend
Jooiat=
ontheindexk=0,....r—1.
In fact, from (5) it follows that:
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FE— b N [)“(\ (=1 "D g (1}
ok T

7

-~
.

S E N D(
ot K

1 1N \ v LA ol kol
(- 1) ' (- 1) D ngl,‘]. - v
But /7Y = [I and [71." 1= 0, as it follows from (4) and (6).
Thus. /; = 0:or equivalently &', = & |

EXISTENCE. First et us suppose that p is the canonical projection p - IR x IR —

— R”. With the above notations. take

rol Cu
(7) fl=cniea) N e

-0

a+(/)+ﬁ) B 5o o
p ]cx+(1)+6|' 'd,\'kf,”.)w)
for the coefficients of the valued form 7.
A direct computation proves that
_ e o
dimAon=Y% Y e D( ) 0" Adx A Adyx,
T a= or!
rooZ
=Y Y — Ay A Ay,
‘I-— al=1 dy@

Thus, the form

,
(I)k, ‘dff/\w—l-dtn/\f)' : \ \ —l)“”[)“(

I oo =0 S

verities conditions (1), (2), (3) and (**) of the theoren.
let (V. ;) be an open cover of the manifold Y such that the submersion

Finally,
x IR" — [R” and

piV,=U =pV I.) is isomorphic to the canonical projection IR”
(¢;) be a partition of unity subordinate to the cover J'(F/U . If one denotes by
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n; the valued form associated to the function .,Sf’i =¢; £ by formula (7), one has

b, =dF Nw+dmn A0

i

Thus, the form

(I)y = Z (I)Y.‘ =d A w +E(<Z T?i)ﬁ Br)

H

H

fulfils the conditions (1), (2) and (3) of the theorem.

COROLLARY. (Infinitesimal functoriality of the d)_f form). If D is a p-projectable
vector field on Y, then: LD(?J') P, = <I>f ., where &' :D(r) L+ (divD")y Land
D' is the projection of D on X.
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